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Abstract

This article presents a mass correction procedure for unidirectional stratified flow of two fluids (or two phases of the

same fluid) using the level-set method. A localized mass correction term is introduced to ensure mass conservation at

every axial cross-section. The mass correction term is based on the mass flowrates. Phase change is captured using the

mass correction term. For demonstration purposes, this article assumes that both phases are at their respective satu-

rated states and the heat addition results in phase change at the saturation temperature. Results for various combina-

tions of density, viscosity and mass flowrate ratios are presented. The proposed procedure is validated using available

fully developed exact solutions for unidirectional stratified flow. The evolutions of the interface in the developing region

are also captured and compares well with ‘‘exact’’ solutions.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Two-phase flows are encountered in a variety of engi-

neering applications. These include, but are not limited

to, flow of polymers, and gas bubbles in liquids. There

are two general types of two-phase flow prediction pro-

cedures [1]. These are the particle tracking method and

the interpenetrating continua method. The particle

tracking method is developed primarily to compute

flows where the secondary phase travels along trajecto-

ries. In this situation, the primary phase is treated as a

single phase. The resultant velocity field carries the sec-

ondary phase in the flow domain. If needed, the second-

ary phase can impart (usually localized) momentum

source or sink on the primary phase. The other class
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of procedure can handle situations where both phases

interact and affect each other significantly. These in-

clude, but are not limited to, the two-fluid model with

IPSA [2], the height-of-liquid method [3], the volume-

of-fluid (VOF) method [4] and the level-set (LS) method

[5].

Recently, the LS method has been used to model (1)

evolutions of bubbles under gravitational effect [6–9], (2)

evolutions of bubbles carried by a primary fluid in pipes

[10,11], (3) boiling and phase change [12–16], (4) thermo-

capillary pumping for electronic packaging [17], (5)

moving solids [18] and (5) injection molding [19].

One drawback of the LS method is the loss (or gain)

of mass. Various mass correction terms have been pre-

sented to overcome this shortcoming [7–9]. These proce-

dures ensure global mass conservation of the two phases.

This article presents a mass correction scheme which

ensures mass conservation at every cross-section along

the flow direction for a unidirectional flow. Unlike the

existing mass correction schemes, it is based on the mass
ed.
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Nomenclature

hfg latent heat of vaporization

D Dirac delta function

H Heaviside function

L length

_mc current mass flowrate

_mcor mass preservation factor

_md desired mass flowrate

_mevp evaporation mass flowrate

_m00
pc mass flux due to phase change

p pressure

q heat flux

Q total rate of heat addition

S source term

t0;�t pseudo-times

u velocity
_V volumetric flowrate

W height

x coordinates

~x position vector

a property

d interface location

e grid size related parameter

C diffusion coefficient

l viscosity

/ dependent variable

q density

n,w,w 0 level-set functions

Subscripts

fd fully developed

int interface

liq liquid

ref reference phase

vap vapor
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flowrates. The analysis focuses on steady-state solutions

of the continuity and momentum equations.

The remainder of this article is divided into three sec-

tions. The governing equations, the basis of the mass

preservation scheme and the solution procedure are

discussed in the next section. This is followed by the

presentation of the results. Finally, some concluding

remarks are given.
2. Mathematical formulation

2.1. Governing equations

The steady, incompressible continuity and momen-

tum equations in Cartesian tensor notation for a two-

phase flow problem can be written as

ouj
oxj

¼ 1

qvap
� 1

qliq

 !Z
_m00
pcD ~x�~xintð Þds ð1Þ

quj
oui
oxj

¼ o

oxj
l
oui
oxj

� �
� op
oxi

þ o

oxj
l
ouj
oxi

� �
ð2Þ

where q, l, _m00
pc, D,~x,~xint and ds are the density and the

viscosity appropriate for the phase occupying the partic-

ular spatial location, the mass flux due to phase change,

the Dirac delta function, the position vector, the posi-

tion vector of the interface and the infinitesimal area

of the interface, respectively. The source term in Eq.

(1) accounts for the density difference in the liquid–

vapor phase change effect. In this article, the capillary

number is assumed to be large. As a result, the surface
tension term is not included in Eq. (2). The mass correc-

tion scheme can be used even when the surface tension

term is included. The density and viscosity are calculated

using

a ¼ ð1� HÞa1 þ Ha2 ð3Þ

In Eq. (3), a can be the density or viscosity. The Heavi-
side function H is related to the normal distance from

the interface and is calculated using [7]

H ¼

0 n < �e
n þ e
2e

þ 1

2p
sin

pn
e

� �
jnj 6 e

1 n > e

8>><
>>: ð4Þ

In Eq. (4), e is related to the grid size and is usually taken
as a factor of the grid spacing. In this combined formu-

lation, an additional scalar variable, called the level-set

function, is used to identify the distances from the inter-

face between the two phases and the reference plane.

The equation governing the evolution of the level-set

function is

uj
on
oxj

¼
_m00
pc

q
jrnj ð5Þ

In Eq. (5), the mass flux due to phase change _m00
pc, is zero

when there is no phase change. In the proposed ap-

proach, Eq. (5) without the mass flux term is solved.

This is written as

uj
on
oxj

¼ 0 ð6Þ
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Fig. 1. Mass flowrates at three axial locations.
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In the absence of phase change Eq. (6) is sufficient to

capture the evolution of the distance function. However,

mass of the various ‘‘phases’’ might not be conserved.

As a result, a mass correction step is introduced to en-

sure mass conservation. With phase change, in addition

to the above-discussed mass ‘‘error’’, Eq. (6) introduces

an additional error due to the omission of the phase

change mass flux. As a result, in problems with phase

change, the mass correction step is used to account for

the mass flux due to phase change and the mass ‘‘error’’

due to the inability of the level-set method to conserve

mass. Details of this mass correction step will be dis-

cussed later.

In the solution of the level-set function (Eq. (6)), any

convenient reference value can be assigned to the inter-

face. The values of n at all node points are then calcu-
lated based on the reference value at the interface. The

level-set function n, is the normal distance from the inter-

face. It is therefore a distance function which satisfies

j$nj = 1. The value of n at the interface is set to zero.
As a result, n has opposite signs in the two phases.

For this formulation to work properly, n must remain
a distance function. However, this can only be ensured

at the beginning of the iteration process where the loca-

tion of the interface is assumed and the values of n at all
nodes are specified. During the iteration process, the val-

ues of n are calculated using Eq. (6). Although the

interface is still represented by the reference value, the

other values of n might not be the distances from the

interface. As a result, another scalar variable is defined

and solved. This variable must be a distance function

and has the same interface value as n. The ‘‘steady-state’’
solution of w given in Eq. (7) satisfies the above

requirements.

ow
o�t

¼ signðnÞð1� jrwjÞ ð7Þ

In Eq. (7),�t is a pseudo-time for the variable w. Eq. (7) is
subjected to the following initial condition.

wð~x; 0Þ ¼ nð~xÞ ð8Þ

It is clear from Eq. (7) that the ‘‘steady-state’’ solution

satisfies j$wj = 1. Thus, it is a distance function. The ini-
tial value (Eq. (8)) ensures that the interface value of w is
identical to the interface value of n. As a result, the
‘‘steady-state’’ values of w are the distances from the

interface. Although Eq. (7) ensures w and thus n as

the distance function, it suffers a significant drawback.

It does not ensure the conservation of mass of the vari-

ous phases. To ensure mass conservation at each cross-

section of a unidirectional flow, a local mass correction

factor is defined and an additional equation is solved.

This is written as

ow0

ot0
¼ _mcor ð9Þ
In Eq. (9), t 0 and _mcor are pseudo-time (which can be dif-

ferent from the pseudo-time �t) and mass conservation
factor, respectively. For the unidirectional flow without

phase change (Fig. 1), the mass flowrate at every axial

location remains constant. As a result, Eq. (9) must be

ensured at every axial cross section. The local mass cor-

rection factor is

_mcor ¼ signðnrefÞ
ð _md � _mcÞ

_md

ð10Þ

where _md and _mc are the desired mass flowrate and the

most current local mass flowrate of the reference phase,

respectively. Depending on the choice of the Heaviside

function of the reference phase, the mass flowrate of

the reference phase can be calculated using

_m ¼
P

qrefHuDA H ref ¼ 1P
qrefð1� HÞuDA H ref ¼ 0

�
ð11Þ

The summation is performed over a cross-section. In the

absence of phase change, the desired mass flowrate is

calculated using the inlet condition. This mass correction

scheme is also used to account for phase changes due to

evaporation or condensation. For such situations, the

desired mass flowrate is calculated from the conserva-

tion of mass over a control volume. Fig. 2 shows a situ-

ation where heat is added to the channel and the liquid

phase is transformed into vapor through evaporation.

When both phases are at their respective saturated states

and the heat addition results in phase change, the total

heat added (Fig. 2) is related to the evaporation mass

flowrate through

_mevp ¼
Q
hfg

ð12Þ

In Eq. (12), _mevp, Q and hfg are the mass flowrate of the

evaporated liquid phase, the total rate of heat addition

and the latent heat of vaporization, respectively. The de-

sired mass flowrate is related to known mass flowrate of

an upstream location (Fig. 2) and can be written as
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_md ¼ _mu � _mevp ð13Þ

In Eq. (13), _mu is the known mass flowrate of an up-

stream location. Eqs. (12) and (13) can be used to model

condensation. In such situation, heat is being removed

from the channel and thus the heat transfer rate Q will

be negative.

In non-isothermal situations, the energy equation

must be solved. Eq. (12) must be modified to include

the temperature gradient at the interface and the energy

convected into and out of the control volume shown in

Fig. 2.

2.2. Summary of the solution procedure

The solution procedure can be summarized as

follows:

1. Guess the locations of the interface.

2. Calculate the normal distances for all nodes from the

interface.

3. Specify the properties for all nodes using Eqs. (3) and

(4).

4. Solve the continuity and momentum equations given

by Eqs. (1) and (2).

5. Solve for n (Eq. (6)) using the velocities obtained in
Step 4.

6. Solve for the ‘‘steady-state’’ w (Eq. (7)) using the val-

ues of n from Step 5 as the initial values.

7. Solve for the ‘‘steady-state’’ w 0 (Eq. (9)) using the val-

ues of w from Step 6 as the initial values.

8. Set nð~xÞ ¼ w0ð~xÞ.
9. Repeat Steps 3 through 8 until the solution

converges.

At the end of the first ‘‘steady-state’’ solution (Step

6), w is a distance function. However, mass might not

be conserved. The ‘‘steady-state’’ solution at the end of

Step 7 ensures that w 0 is a distance function and also

conserves mass.
2.3. Numerical method

The continuity equation (Eq. (1)), momentum equa-

tion (Eq. (2)), the level-set equations (Eqs. (6), (7) and

(9)) are special cases of a general transport equation

q
o/
ot

þ quj
o/
oxj

¼ o

oxj
C
o/
oxj

� �
þ S ð14Þ

where /, q, C, and S are the dependent variables, den-

sity, diffusion coefficient and source term, respectively.

The finite-volume method of Patankar [20] is used to

solve the transport equation given in Eq. (14). A stag-

gered grid is used in this article. The scalar variables

are stored at the centers of the control volumes, while

the velocities are located at the control volume faces.

In this article, the power-law of [20] is used to model

the combined convection–diffusion effect in the momen-

tum equations. The first-order upwind scheme is used to

model the convection of the level-set equations. The

SIMPLER algorithm is used to resolve the velocity-pres-

sure coupling. The fully implicit scheme is used to discre-

tize the transient term. The resulting algebraic equations

are solved using the TriDiagonal Matrix Algorithm.

The first level-set equation (Eq. (6)) is the ‘‘steady-

state’’ form of Eq. (14) with q = 1, C = 0 and S = 0.

The second level-set equation (Eq. (7)) is modeled using

q = 1, u = v = 0, C = 0 and S = sign(w)(1 � j$wj). The
mass preservation equation (Eq. (9)) is modeled using

q = 1, u = v = 0, C = 0 and S ¼ _mcor.
3. Results and discussions

Fig. 3 shows the schematic of the problems consid-

ered in this article. Two immiscible fluids (or two phases

of the same fluid) flow a distance L between two parallel

plates separated by a distanceW. For a given set of den-

sity ratio, and mass flowrate ratio, the inlet ‘‘thickness’’

din of fluid 1 determines the inlet velocities of both fluids
namely, uin,1 and uin,2. As the flow develops, the velocity
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profile at every section changes along the axial direction.

As a result, the interface d between the two fluids evolves
along the flow direction. Once the fully developed region

is reached, the velocity profile and the interface location

d become independent of the axial coordinate.
Three problems are considered in this article. In the

first problem, the densities and viscosities of the two flu-

ids are set to the same values. The second problem

shows the capabilities of the procedure in capturing

the flows of two immiscible fluids of different densities

and viscosities. The third problem demonstrates the

capability of the proposed formulation in modeling

phase change effects. Unless otherwise specified, the

dimensionless velocity (u/uave) profiles are used in the

following discussions.
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Fig. 4. Variation of d/W along x/W for din/W = 0.3, Re = 1,

u1 = u2, q1 = q2 and l1 = l2. (a) Without and (b) with mass

correction.
3.1. Two immiscible fluids with same properties

In this problem, two immiscible fluids with the same

densities q1 = q2 and the same viscosities l1 = l2 flow be-
tween two parallel plates. With this choice of properties,

the fully developed velocity profile is that for a single-

fluid.

To initiate this study, the inlet velocities of the two

phases are also set to the same value namely, uin,1 =

uin,2 = uin. With this additional restriction, the velocity

field in both the developing and fully developed regions

are the same as the single-fluid velocity field. As an

example, the inlet interface is located at din/W = 0.3.

This implies a mass flowrate ratio of _m1= _m2 ¼ 3=7. The
inlet velocities of the two fluids are calculated based

on the single fluid Reynolds number Re of 1. Using this

Re, the inlet velocities are

uin;1 ¼ uin;2 ¼ uin ¼
lRe
qW

ð15Þ

The length L and height W of the channel are set to 1

and 1, respectively. Zero axial gradient condition is used

at the exit. The effects of grid resolutions on the interface

evolutions with and without mass correction are shown

in Fig. 4. Computations are carried out using 10 · 10,
20 · 20, 30 · 30, 40 · 40, and 50 · 50 uniformly spaced
control volumes. It can be seen that the interface evolu-

tions do not change when 40 · 40, and 50 · 50 control
volumes are used. As a result, unless otherwise specified,

all subsequent results are obtained using 40 · 40 control
volumes.

Without mass correction, the fully developed inter-

face locations vary with grid resolution before converg-

ing to its grid independent fully developed location. It is

interesting to point out that with mass correction, the

interface location in the fully developed region is the

same irrespective of the number of control volumes

used. For quantitative analysis, a term called the mass

error is defined as
_mERR;k 	
j _min;k � _mcal;k j

_min;k
ð16Þ

In Eq. (16), _min;k and _mcal;k are the inlet mass flowrate

and the calculated (local) mass flowrate, respectively

for fluid k. The mass errors for fluid k (Eq. (16)) are

shown in Fig. 5. Without mass correction, the mass

errors are finite. These mass errors reduce to machine

zero (10�16) with mass correction. For further compari-

sons, the interface locations along the axial locations are

calculated and compared with the numerical predictions.

The ‘‘exact’’ solutions are obtained by ensuring the con-

servation of mass of fluid 1 using the discrete local sin-

gle-fluid velocity profile. For ease of discussion, assume

the area occupied by fluid 1 spans from the first control

volume to part of control volume N as shown in Fig. 6.

The interface location d is then

d ¼
XN�1

j¼1
Dyj þ fDyN ð17Þ

where f is the fraction of the area of control volume

N occupied by fluid 1. The fraction f can be obtained
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by ensuring the conservation of mass of fluid 1. Let

the mass flowrate into control volume j at x be

D _mj. Then, the mass flow rate of fluid 1 can be written

as
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_min;1 ¼
XN�1

j¼1
D _mj þ fD _mN ð18Þ

or

f ¼
_min;1 �

PN�1

j¼1
D _mj

D _mN
ð19Þ

Fig. 7 shows the velocity profiles at six axial locations

and the interface between the two fluids. These are ob-

tained with mass correction. The fully developed veloc-

ity profile is identical to the exact solution from single

fluid. The interface also agrees with the ‘‘exact’’ solution

exactly. This problem shows that with mass correction,

the interface evolution between two immiscible fluids is

well captured.

Fig. 8 shows the ability of the procedure in predicting

the evolution of the interface with non-uniform inlet

velocity profile. Similar to the previous problem, the

inlet interface is located also at din/W = 0.3. The inlet

Reynolds numbers (Eq. (20)) of fluid 1 and fluid 2 are
0.8 1 1.2 1.4
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2

for din/W = 0.3, Re = 1, u1 = u2, q1 = q2 and l1 = l2.
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set to 2 and 1, respectively. This results in a mass flow-

rate ratio of _m1= _m2 ¼ 6=7.

Re ¼ quinW
l

ð20Þ

From Fig. 8, as expected, the single-fluid velocity profile

is recovered in the fully developed region. The predicted

interface compares well with the ‘‘exact’’ solution. Com-

paring Figs. 7 and 8, fluid 1 occupies more of the flow

area when the inlet velocity is increased.
0
0 0.5 1 1.5 2

x/W

Fig. 9. Evolutions of d/W along the axial direction for the flow

of two-immiscible fluids between parallel plates for three inlet

interface locations.
3.2. Two immiscible fluids with different properties

In this problem, the flow of two immiscible fluids of

different densities, viscosities and inlet mass flowrates

between two parallel plates is examined. For this type

of problem, the fully developed velocity profile and

interface location are functions of the viscosity ratio

and the volumetric flowrate ratio and are independent

of the inlet interface location [21,22]. Similar to the pre-

vious example, zero axial gradient condition is used at

the exit. For demonstration purposes, a parallel plate

channel with L/W = 2 is studied. The density ratio q1/
q2, mass flowrate ratio _m1= _m2, viscosity ratio l1/l2 are
taken as 2, 0.837, and 10, respectively. These values

are chosen so that the interface is located at y/W = 0.5

in the fully developed region. A grid independent study

shows that 40 · 40 uniformly spaced control volumes

produces a grid independent solution. Fig. 9 shows the

evolutions of the interface for three values of the inlet

interface locations din/W namely, 0.3, 0.5 and 0.7,

respectively. As expected, the interfaces evolve along

the axial direction. Downstream from the entrance, all

interfaces reach their fully developed value of 0.5. It is

interesting to note that the interface developed faster

when din/W = 0.7 (than when din/W = 0.3). This will be

explained later. Fig. 10 shows the evolutions of the
velocity fields and interfaces for din/W of 0.3 and 0.7.

Once the flow is fully developed, all velocity profiles set-

tle to the same shape. The predicted fully developed

velocity profiles compare very well with the exact solu-

tion [21]. Although not shown, the interface profiles in

the developing region compare well with the ‘‘exact’’

solution given by Eq. (17). From Fig. 10, it can be seen

that the inlet velocity profile with din/W = 0.7 is closer to

the fully developed profile than the inlet velocity profile

when din/W = 0.3. As a result, the interface developed

faster when din/W = 0.7. Churchill [22] derived the fully

developed interface thickness as function of the viscosity

and volumetric flowrate ratios. Fig. 11 shows the com-

parisons between the present computations and the

exact solutions [22]. It can be seen that the present pro-

cedure captures the interface locations correctly for the

ranges of viscosity and volumetric flowrate ratios

studied.
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3.3. Liquid–vapor flow with phase change

In this section, the interface development of liquid

flow with vaporization due to heat addition is examined.
The focus of this problem is on the prediction of the

interface evolution in the presence of vaporization.

The viscosities and inlet velocities of the two (liquid

and vapor) phases are set to the same values. The den-

sity ratio qliq/qvap is set to 2. The inlet interface is set
to din/W = 0.3 which implies a mass flowrate ratio

_mliq= _mvap of 6/7. The length to height ratio L/W is set

to 2. The initial portion (0 6 x/W 6 1) of the channel
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Fig. 13. Evolutions of velocity and interface profiles along the axial direction for liquid–vapor flow with phase change.
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is heated while, the remaining of the channel walls is

insulated. This can be written as

_m00
pc ¼

0:3 0 6 x=W 6 1

0 1 < x=W 6 2

�
ð21Þ

Fig. 12 shows the mass flowrates and mass errors of the

two phases as functions of the axial coordinate. As ex-

pected, the mass errors reduce to machine zero at all

axial locations. In the initial portion of the channel,

due to evaporation, the mass flowrate of the liquid phase

decreases along the flow direction. The reverse is

observed for the vapor phase. These mass flowarates

become constant in the unheated portion of the channel.

The liquid phase and vapor phase mass flowrates pre-

dicted using the proposed approach compare well with

the exact solutions (Eq. (13)). Fig. 13 shows the interface

evolutions along the axial coordinates. As expected, the

liquid layer is thinner with evaporation. Again, the solu-

tion compares well with the exact solution.
4. Concluding remarks

A localized mass correction scheme for unidirectional

stratified flow, which allows for phase change, is pre-

sented. The mass correction scheme is used to model

flows between parallel plates with and without evapora-

tion. Effects of density, viscosity and mass flowrate

ratios are examined. Results arising from use of the pro-

posed scheme compare very well with available exact

solutions.
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